
4TH INTERNATIONAL CONFERENCE ON CIRCUITS, CONTROL, COMMUNICATION AND COMPUTING (I4C-2022), 21 - 23 DECEMBER 2022

507
979-8-3503-9747-5/22/$31.00 ©2022 IEEE

SBP: Storage Benchmark Protocol

Keshava Munegowda
Vice President, SecDB Engineering Goldman Sachs

 Bengaluru, India
 keshava.gowda@gmail.com

Abstract—The Storage Benchmark Protocol (SBP) is defined,

designed and implementation details are discussed in this

research paper. The SBP is used for an optimal performance

benchmarking of high performance distributed big data storage

systems. The SBP defines a network communication format and

methods to consolidate the performance benchmarking

parameters from single/multiple storage performance

benchmarking entities/nodes. The SBM (Storage Benchmark

Monitor) implements the SBP as a server. The SBP client is

implemented as part of the SBK (Storage Benchmark Kit)

framework.

Keywords—Benchmarking, Big Data, File Systems, GRPC,

Latency, Performance, Percentile, PerL, Protocol Buffers,

Quartile, SBK, SBM, SLC, SBP, Storage, Throughput.

I. INTRODUCTION

The SBK (Storage Benchmark Kit)[1][2][3] is a high
performance and scalable open-source software framework

to measure performance of any type of storage system with

any type of data/payload and any time stamp such as

milliseconds, microseconds and nanoseconds. The SBK

supports performance benchmarking with multiple readers

and writers too. In any distributed big data storage systems,

multiple instances of SBKs can be executed in single/multiple

systems/nodes to load the heavy data to the storage system

and conduct the performance analytics. In such situations ,

each SBK instance measures the number of bytes read/written

, number of records read/written and large number of millions

and billions of latency values and then it calculates the
performance result metrics such as throughput , quartile and

percentile of latency values. Manually analyzing the

performance values and result metrics from every SBK

instance is cumbersome and error-prone activity. Thus, this

research paper introduces SBP (Storage Benchmark

Protocol).

II. STORAGE BENCHMARK PROTOCOL

The SBP defines the message/data formats to be
exchanged between a single server and multiple clients. Each
SBP client sends the performance values containing the
number of bytes read and written , number of records read and
written and the series of latency values to the SBP server. The
SBP server consolidates all these performance results and
calculates the throughput and percentiles of latency values and
SLC (Sliding Latency Coverage) factors[4]. In the SBK
framework [2][3] and as part of this paper, the SBP Server is
entitled as SBM (Storage Benchmark Monitor).

Figure 1 shows the distributed cluster deployment of SBK
and SBM. The SBK implements the SBP client protocol.
Every SBK instance sends the performance values to SBM
using SBP. The SBK initiates the multiple readers and writers
to the storage system and then periodically calculates the
performance values such as number of bytes and records read
and written and the latency values for every record. These
performance values are used to calculate the throughput ,

quartile and percentile of latency values and SLC factors.
Each SBK instance prints the performance results such as
throughput , quartiles and percentiles of latency values to a
local output device and to the Grafana [5] analytics platform
via Prometheus [6] monitoring and alerting system to generate
the performance graphs. Similarly , the same SBK instance
sends the performance values to SBM periodically using the
SBP protocol.

Figure 2 shows the message formats of Storage

Benchmark Protocol. The SBK (SBP client) initiates the

connection to SBM (SBP Server) and then SBM sends the

config record to SBK. The config record consists of the

storage name for performance benchmarking , Time unit in

which latency values are measured. Typically, Time unit will

be either a millisecond , microsecond or nanosecond.

Minimum and Maximum latency values the SBM can

measure and store. The latency values below minimum

latency and above the maximum latency are always
discarded. After obtaining the config details from the SBM,

the SBK can accept it and proceed to send the latencies

Figure 1: SBK and SBM

20
22

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

irc
ui

ts
, C

on
tr

ol
, C

om
m

un
ic

at
io

n
an

d
Co

m
pu

tin
g

(I4
C)

 |
 9

79
-8

-3
50

3-
97

47
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

I4
C5

71
41

.2
02

2.
10

05
77

95

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2023 at 05:45:27 UTC from IEEE Xplore. Restrictions apply.

 508

records or it can reject the connection due to mismatch of

time unit or any other configuration parameters. The latencies

record contains the values such as number of readers and

writers, the number of records and bytes read and written,

minimum and maximum latency values recorded by SBK and

the number of discarded latency values too. The latencies
record also contains the list/series of the latencies key value

pairs in which each pair consists of latency as a key and the

count of the number of times the same latency occurred as a

value. Transferring a single latencies record from SBK to

SBM must be an atomic transaction.

The SBM continuously receives the multiple latencies

records from single or multiple SBK instances. It

consolidate/combines the latencies records and calculates the

performance benchmarking values such as throughput in

terms of MBs (Mega Bytes)/ Seconds of read and write

operations, throughput in terms of Records / Seconds of read
and write operations, quartiles and percentiles of latency

values and SLC factors. These performance results are

periodically delivered to a local output device and to any

registered logger and Grafana [5] analytics platform via

Prometheus [6] monitoring and alerting systems to generate

the consolidated/integrated performance graphs.

Figure 3 shows the design of the SBM. The SBM is a high

performance GRPC [7] (Google Remote Procedure Calls)

Server. The SBP messages shown in figure 2 are encoded as

a Protocol Buffer [8] file. The Protocol buffer compiler

(Protoc) [9] generates the template code for the SBP protocol

buffer file. The research, depicted in this paper, implements
the SBM using the programming language Java [10] version

17. The connection threads shown in figure 3 are the active

Java fork join execution threads [11] for the GRPC

connections. There will be one active thread per GRPC

connection. Each of these threads receives the performance

values from SBK via GRPC functions/ methods and

enqueues them to a dedicated non-blocking concurrent linked

memory queues [12][13]. The SBM has a dedicated thread

called “Throughput and Latency Aggregator” to dequeue the

performance values from these multiple non-blocking

concurrent queues. The SBM uses the APIs(Application
Programming Interface) of PerL(Performance Logger)

library to calculate the performance results such as

throughput and latency percentile values. Both SBK and

SBM use common APIs of the PerL library to calculate the

performance results. The SBK prints the performance results

to a local output device using the Results Aggregation

Monitor (RAM) logger and system logger modules shown in

figure 3. The performance results are also updated to the

metric parameter values of the micrometer subsystem [14]

and thus transferred to the Grafana system via Prometheus

logger. The Grafana system plots the performance graphs

using these performance metrics. A web browser or user
applications can fetch these performance metrics too.

The Protocol Buffer Compiler can generate template code

for C++, Python and GO Programming languages too. Hence,

the existing Java based SBM can be used to fetch the

performance values from the SBP clients implemented in

C++, Python and GO programming languages.

III. RESULTS AND DISCUSSION

In this paper the SBK framework release version 2.0 is

used for performance benchmarking. The SBM implemented

is part of the SBK framework. The SBM implementation of
version 2.0 is inspired/extended from the SBK-RAM (Result

Aggregation Manager) of SBK earlier version 1.0. The SBK

framework generates the read/write data payloads for

benchmarking experiments. The performance benchmarking

is conducted using a single file reader thread reading the data

from an already existing file in a local file system. The data

size is set to 10 bytes for every single read iteration. The

hardware and software configurations used for file read

performance benchmarking is listed in TABLE1.

Figure 2: SBP Message formats

SBM

[SBP Server]

SBK

[SBP Client]

[Storage Name]

[Time Unit]

[Minimum Latency]

[Maximum Latency]

Config

Connection from

SBP client

[Number of Writers]

[Number of Readers]

[Number of Records Read]

[Number of Records Written]

[Number of Bytes Read]

[Number of Bytes Written]

[Minimum latency]
[Maximum latency]

[Discarded latencies]

[List of latencies Key Value

pairs]

Latencies Record

Latencies Record

…

…

…

Latencies Record

Close Connection

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2023 at 05:45:27 UTC from IEEE Xplore. Restrictions apply.

 509

TABLE I. ARDWARE AND SOFTWARE CONFIGURATION OF THE TEST SETUP

Components Remarks

System Mac Book Pro 16-inch , year 2020 model

Number of CPU Cores 8 Intel CPU Cores. Each core is 64 bits.

Main Memory Size 16 GB (Giga Bytes)

Storage Disk
SSD (Solid State Drive) of size 1TB (Tera

Bytes)

Operating System Mac OS Monterey Version 12.5.1

File System APFS (Apple File System] [15]

 SBK and SBM Version 2.0 [3]

Java Virtual Machine (JVM) Version 17 [10]

Protocol buffer Version 3.0 [9]

Figure 4: SBK File Read throughput in terms of MB/s

Figure 4 shows the Grafana snapshot of the throughput in

terms of MB/second for file read operations by a single

instance of SBK. Similarly, Figure 5 shows another Grafana

snapshot of the throughput in terms of records/second for the

same read operations. The throughput range of 10-12 MB/s

and 1 million – 1.2 million records/second are observed for

single file reader operations. The latency percentile values of

5th, 10th , 20th , 25th , 30th , 40th and 50th are shown in

figure 6. The latency percentile values of 50th, 60th , 70th ,

75th , 80th , 90th , 92.5th , 95th, 97.5th , 99th, 99.9th , 99.99th
are shown in figure 7. The latency value 700 nanoseconds is

observed as 50th percentile and 34.5 microseconds is

observed as 99.99th percentile.

Figure 5: SBK File Read throughput in terms of records/second

Figure 6: SBK File Read latencies from 5th to 50th percentiles

Figure 7: SBK File Read latencies from 50th to 99.99th percentiles

Figure 3: Design of SBM

Multiple
Concurrent

Queues
…
…

Results Aggregation Monitor Logger

System Logger

Micrometer.io

SBP client
connection
Thread 1

SBP client
connection
Thread 2

SBP client
connection
Thread N

PerL
[Performance Logger]

Latency and
Throughput
Aggregator

Prometheus Logger

Web Browser / User Application

Grafana

Read and
Write

Bytes and
Latency
values

Throughput and
Latency percentiles

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2023 at 05:45:27 UTC from IEEE Xplore. Restrictions apply.

 510

Figure 8: SBM File Read throughput in terms of MB/s

Figure 8 shows the Grafana snapshot of the throughput in

terms of MB/second for file read operations by SBM with 2

instances of SBKs with a single reader per each SBK instance.

Similarly, Figure 9 shows another Grafana snapshot of the

throughput in terms of records/second for the same file read
operations. The consolidated throughput range of 12-14

MB/s and 1.2 million – 1.4 million records/second are

observed for single file reader operations. The consolidated

latency percentile values of 5th, 10th , 20th , 25th , 30th , 40th

and 50th are shown in figure 10. The latency percentile values

of 50th, 60th , 70th , 75th , 80th , 90th , 92.5th , 95th, 97.5th ,

99th, 99.9th , 99.99th are shown in figure 11. The latency

value 1.1 microseconds is observed as 50th percentile and

96.6 microseconds is observed as 99.99th percentile. Note

that, the combined throughput values are increased and due

to an increased number of records the latency percentiles are

decreased without any performance degradation.

Figure 9: SBM File Read throughput in terms of records/second

Figure 10: SBM File Read latencies from 5th to 50th percentiles

Figure 11: SBM File Read latencies from 50th to 99.99th percentiles

IV. CONCLUSION

This paper defines and implements the Storage
Benchmark Protocol (SBP) and Storage Benchmark Monitor

(SBM) as SBP server and SBP client is implemented as part

of SBK framework using GRPC framework and Protocol

buffers. The implementation of SBM has improved the entire

SBK framework deployable as a distributed cluster for any

distributed big data storage performance benchmarking. The

SBM provides the continuous cumulative performance

results by consolidating the performance values from

multiple SBK instances. Since the SBP is defined as a

Protocol buffer file the Protocol compiler provides a

flexibility to implement the SBP client and server (SBM) in

C++, Python and GO programming languages along with
existing Java implementation. This research work can be

extended to implement SBP clients using C++, Python and

GO programming languages, thus, SBK framework can

support the benchmarking of storage systems with any

programming language too. As a future work, both SBM and

SBP clients can be extended to deploy remotely on larger

distributed systems simultaneously from a single SBM node

to multiple SBK nodes.

REFERENCES

[1] Munegowda K., Sanjay Kumar N.V. “Design and Implementation

of Storage Benchmark Kit”, In: Emerging Research in Computing,

Information, Communication and Applications. Lecture Notes in

Electrical Engineering, vol 790, Springer, Singapore.

https://doi.org/10.1007/978-981-16-1342-5_5 , 2022.

[2] Storage Benchmark Kit (SBK) :

https://github.com/kmgowda/SBK, 2022.

[3] SBK Releases : https://github.com/kmgowda/SBK/releases,

October 2022.

[4] Munegowda K., Sanjay Kumar N.V. “SLC: Sliding Latency

Coverage Factors for Optimal Performance Benchmarking of

Storage Systems”, 3rd International Conference for Emerging

Technology (INCET), IEEE,

https://ieeexplore.ieee.org/document/9825170, May 27-29, 2022.

[5] Grafana Website : https://grafana.com/ , 2022.

[6] Prometheus Website : https://prometheus.io/ , 2022.

[7] GRPC (Google Remote Procedure Calls) framework, website :

https://grpc.io/ , 2022.

[8] Protocol Buffers, website :

https://developers.google.com/protocol-buffers , 2022.

[9] Protocol buffer compilers, website : https://grpc.io/docs/protoc-

installation, 2022.

[10] Java Version 17, Release notes :

https://www.oracle.com/news/announcement/oracle-releases-java-

17-2021-09-14/

[11] Goetz B (2010) Java Concurrency in practice, Addison-Wesley

publications, 9th print.

[12] Michael MM, Scot ML (1996) Simple, fast and practical non-

blocking and blocking concurrent queue algorithms, In:

Proceedings of the fifteenth annual ACM symposium on Principles

of distributed computing.

[13] Java 7/8 concurrent linked queue ,

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Con

currentLinkedQueue.html , 2022.

[14] Micrometer IO , website: https://micrometer.io/ , 2022.

[15] Apple File System, website : https://support.apple.com/en-

in/guide/disk-utility/dsku19ed921c/mac, 2022.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 08,2023 at 05:45:27 UTC from IEEE Xplore. Restrictions apply.

