
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S, December 2019

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19
1

Distributed Streaming Storage Performance

Benchmarking: Kafka and Pravega

Sanjay Kumar N V, Keshava Munegowda

Abstract: The performance benchmarking tool for a

distributed streaming storage system should be targeted to achieve

maximum possible throughput from the streaming storage system

by thrusting data massively. This paper details the design and

implementation of high-performance benchmark tool for Kafka

and Pravega streaming storage systems. The benchmark tool

presented in this paper supports multiple writers and readers. The

Pravega streaming storage is evaluated against Kafka with respect

to performance.

Keywords: Benchmarking, Big Data, Concurrency,

Distributed Systems, Events, Kafka, Latency, Open Messaging,

Performance, Pravega, Streams, Storage, Throughput.

I. INTRODUCTION

Apache Kafka [1], [2] is one of the widely used distributed

streaming [3] storage systems. An existing Kafka (version

2.3.0) producer benchmark tool [4], [5] for write performance

benchmarking and consumer benchmark tool [4], [5] for read

performance benchmarking, supports only one

producer/writer and consumer/reader respectively. But, in a

real-time scenario/use case, there will be multiple

applications flushing or reading data to/from a single Kafka

client. So, it’s always better to exercise the Kafka client or any

streaming system with multiple producers and consumers. If

the single instance of the benchmark tool allows the multiple

producers/writers, then these multiple threads need to be

synchronized while writing data to Kafka client and also

aggregating the data write responses from multiple threads.

However, the synchronization of multiple threads reduces the

strength of the benchmark tool and it won’t be able to flush

more data to Kafka client.

In this paper, we present the design and implementation
details of Pravega [6], [7] performance benchmark tool [8].
The Pravega benchmark tool was initially developed for the
performance benchmarking of Pravega streaming storage and
later got extended for Kafka performance benchmarking too.
The key differentiation of Pravega benchmark tool compares
to Kafka producer and consumer benchmarking tools are

• Supports multiple producers and consumers.

• A common tool for both writer benchmarking and reader

benchmarking.

• Supports End to End latency.

• Latency percentile calculations are performed for all the

events/messages without any sampling

Revised Manuscript Received on December 12, 2019.

Mr. Sanjay Kumar N V, Associate Professor, Department of CSE,

Kalpataru Institute of Technology, Tiptur, INDIA, sanjaynv@gmail.com

Dr. Keshava Munegowda, Consultant, Pravega Bangalore, INDIA,

keshava.gowda@gmail.com

Even though, the Pravega benchmarking tool supports

multiple writers/readers, it does not compromise on the

speed at which data is flushed to Kafka client/Pravega client.

The Open Messaging benchmark [9] tool also supports

Kafka’s performance benchmarking with multiple producers

and consumers. In this paper, we evaluate the Pravega

benchmark tool against the Kafka producer benchmark tool

for single producer benchmarking, Kafka consumer

benchmark tool for single consumer and Open messaging

benchmark tool for performance benchmarking of multiple

producers. The proposed design and implementation of

benchmarking tool of this paper is used for comparison of

Kafka and Pravega for single producer/consumer and

multiple producers/consumers performance benchmarking.

The same tool is used for End to End Latency benchmarking

of both Kafka and Pravega.

II. DESIGN OF KAFKA AND PRAVEGA

PERFORMANCE BENCHMARK TOOL

As part of performance benchmarking, before sending an

event/message, the writer/producer records the start time by

using API System.currentTimeMillis() [10] and once the

write is acknowledged then the response thread records the

end time by using the same API (Application Programming

Interface). We have experimented using the other API

System.NanoTime() [10] and class Instant APIs [10], but the

System.currentTimeMillis() API has proven very fast and

thread safe too. The time precision of

System.currentTimeMillis() is in milliseconds is enough for

stream storage benchmarking.

Both Kafka and Pravega provide the client APIs for streaming

data into their clusters and reading the same. If the benchmark

tool supports multiple producers and/or consumers, then

multi-threads synchronization is required while accessing the

client APIs and consolidating the read/writer responses from

Kafka/Pravega cluster. The first case is inevitable, and it

should be taken care of by Kafka client or Pravega client. But,

the second case is the benchmark tool’s responsibility. In our

experiments, it was evident that the usage of synchronized

[10] method for multiple thread synchronization reduces the

strength of the benchmark tool and thus not be able to

flush/read more events to the Kafka/Pravega client. Hence,

we designed the architecture of the benchmark tool with a

shared message queue as shown in Fig. 1.

mailto:sanjaynv@gmail.com
mailto:keshava.gowda@gmail.com
mailto:keshava.gowda@gmail.com

Distributed Streaming Storage Performance Benchmarking: Kafka and Pravega

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19 2

Write/ Read

Response

Thread 2
. .

[Start time,

End time]

[Start time,

End time]

Concurrent

Queue

“Benchmark processing Thread”

for throughput and latency

calculation

Write/ Read

Response

Thread N

Write/ Read

Response

Thread 1

Upon receiving the response to write/read, each of the

response threads enqueue the start time and end time of

read/write operation; on the other end, a dedicated benchmark

processing thread dequeue this information for further

throughput and latency calculations. We tried Java 8’s Array

Blocking Queue [11], [12], Linked Blocking Queue [11], [13]

and Concurrent Linked Queue [11], [14], but the Concurrent

Linked Queue does very well with respect to performance and

its implementation is based on wait-free algorithm described

by Maged M. Michael and Michael L. Scott [15]. But the

catch here it is, the poll [14] method of this concurrent Linked

queue is non-blocking. This means, if the benchmark

processing thread keeps invoking poll method in a tight loop

causes the synchronization with add [14] method and it again

reduces the strength of the benchmark tool; So, to mitigate

this problem, if there are no items in the concurrent queue

then the benchmark processing thread does busy waiting for a

constant time (1 millisecond, in our test setup). Another

observation is, this benchmark processing thread should not

sleep, because waking up and scheduling a thread are bit time

consuming operations.

Fig. 1: Design of Pravega benchmark tool

For throughput calculations, the benchmark processing thread

counts each of the events received from the concurrent queue;

the throughput is calculated and published for configured for

specific window intervals. To calculate the time window

intervals, the benchmark processing thread uses time instant

[10] API to avoid synchronizations with

System.currentTimeMillis() API which is used by write/read

response threads.

For latency calculations, the time duration between start time

and end time for each of the event is termed as latency; Note

that, end time gets recorded once the response thread is

scheduled, so scheduling time of response time is inclusive of

latency measurement. If the system, in which the benchmark

tool is running, is heavily loaded then the latency value may

go higher because the scheduling time of response thread was

more. A dedicated integer array is used to keep track of

latency values. The latency value is used as an index of an

array and the same index value is incremented to track the

latencies received. This approach is inspired by the counting

sort algorithm and the latency array is always sorted even

while recording the latencies. The proportional index values

are picked for the latency percentile calculations.

Another important observation is the byte array serialization

and deserialization are faster than compare to string

serialization and deserialization; so, the producers/consumers

send/read the data in the form of array of bytes only.

III. IMPLEMENTATION DETAILS

The described high-performance design of the benchmark

tool is implemented in Java 8 and is available at this Git Hub

[8]:

https://github.com/kmgowda/pravega-benchmark/releases/ta

g/v1.0 .

Since this code is open source and free; so, interested

developers can also review the same, raise issues and

contribute code for further improvements.

The Pravega benchmark tool provides the following modes of

the Benchmarking.

i) Burst Mode

ii) Throughput Mode

iii) OPS Mode or Events Rate/Rate limiter Mode

iv) End to End Latency Mode

i) Burst Mode

In this mode, the Pravega benchmark tool puts the heavy load

on the system by pushing/pulling the messages to/from the

Pravega/Kafka client as much as possible. This mode is used

to find the maximum throughput that can be obtained from

the Pravega/Kafka cluster. This mode can be used for both

producers and consumers. This mode is used for all the

throughput comparisons presented in this paper.

ii) Throughput Mode

In this mode, the Pravega benchmark tool pushes the

messages to the Pravega/Kafka client with specified

approximate maximum throughput in terms of Mega

Bytes/second (MB/s). This mode is used to find the least

latency that can be obtained from the Pravega/Kafka cluster

for a given throughput. This mode is used only for write

operation and useful for analyzing throughput vs latency.

https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S, December 2019

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19
3

iii) OPS Mode or Events Rate/ Rate limiter Mode

This mode is another form of controlling writer’s throughput

by limiting the number of events per second. In this mode, the

Pravega benchmark tool pushes the messages to the

Pravega/Kafka client with specified approximate maximum

events per sec. This mode is used to find the least latency that

can be obtained from the Pravega/Kafka cluster for events

rate. This mode is used only for write operation.

iv) End to End Latency Mode

In this mode, the Pravega benchmark tool writes and read the

messages to the Pravega/Kafka cluster and records the End to

End latency. End to End latency means the time duration

between the beginning of the writing event/record to stream

and the time after reading the event/record. In this mode, the

user must specify both the number of producers and

consumers.

IV. RESULTS AND DISCUSSION

A. Pravega benchmark tool vs Kafka producer performance

tool vs Open messaging Benchmark

The Pravega benchmark tool presented in this paper is

expected to yield the same performance as the Kafka producer

benchmark tool for a single writer. The hardware and

software configurations of these experiments are described in

Table I. The Kafka server configuration and topic

configuration values used are listed in Tables II and III

respectively.

Table I: Hardware and software configuration of Test

setup

Components Remarks

Number of

nodes

4 Nodes

1 for Kafka client /Pravega client

3 for Kafka brokers/Pravega segment

servers.

Each node is installed with RHEL 7.4

release version

CPU 48 CPUs

Each of 64 Bit, 2.3 GHz

RAM 186 GB (Giga Bytes)

Hard Disk SSD (Solid State Drive)

300 MB/s (Mega Bytes/Second) of XFS

File system throughput.

Ethernet 10Gbps (Giga Bits/second) Network

Table II: Kafka Configurations

Table III: Kafka Topic Configurations

Kafka Topic parameters Remarks

Partitions 15

Replication factor 3

Minimum in sync replicas 2

Idempotence producers Enabled

Acks All (-1)

Compression None

Batch size 16K

Buffer memory 32MB

Serialization Byte Array

Deserialization Byte Array

Maximum poll records for

consumers (max.poll)

1

The throughput differences for data sizes of 10, 100, 1000,

10000 and 100000 bytes for a single producer is shown in

Fig. 2. The idempotent producers are used for write

benchmarking. Note that, the difference between maximum

throughput values in terms of MB/s (Mega Bytes per Second)

achieved by Pravega benchmark tool and Kafka performance

benchmark tool is negligible with the added advantage of

multi producers support in the pravega benchmark tool. The

open messaging benchmark tool records low throughput for

data size 10 and 100 bytes; for higher data sizes, the open

messaging benchmark tool produces better throughput and

these throughput values are comparable with Kafka producer

benchmark tool and Pravega benchmark tool. Fig. 3. Shows

the same throughput comparison in terms of events/second or

ops (operations) /second.

Fig. 2: Pravega benchmark tool vs Kafka

benchmark tool vs Open Messaging Benchmark;

Single producer performance in terms of MB/s

Kafka Components/parameters Remarks

Version 2.3.0

Number of brokers 3

Number of clients 1

File System XFS on SSDs

Zookeeper [16] [17] Version 3.5.4 beta

Distributed Streaming Storage Performance Benchmarking: Kafka and Pravega

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19 4

Fig. 3: Pravega benchmark tool vs Kafka

benchmark tool vs Open Messaging Benchmark;

Single producer performance in terms of

Fig. 4: Pravega benchmark tool vs. Open

Messaging Benchmark; 10 Kafka producers

performance comparison in terms of MB/s

Fig. 5: Pravega benchmark tool vs. Open

Messaging benchmark; 10 Kafka producers

performance comparison in terms of

events/second

Fig. 4. Shows the performance of the 10 Kafka producers

using the Pravega benchmark tool and Open messaging

benchmark tool. Note that, the throughput achieved by the

Open messaging benchmark is very low compared to the

Pravega benchmark tool. The open messaging benchmark

tool does not pump/flush data to Kafka client at the maximum

possible rate. Fig. 5. Shows the same throughput comparison

between Pravega benchmark tool and Open messaging

benchmark tool but in terms of events/second.

B. Pravega benchmark tool vs Kafka Consumer

performance tool

Both the Pravega benchmark tool and Kafka consumer

performance tools are producing identical results; The results

are shown in Fig. 6. Note that, the compare to write, the read

performance is recorded low; this is because the configuration

value for maximum number of events to poll (max.poll) is set

to 1; the consumer/reader throughput improves if this value is

set to high.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S, December 2019

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19
5

Fig. 6: Pravega benchmark tool vs Kafka benchmark

tool; Single Kafka consumer throughput

performance in terms of MB/s

C. Kafka vs Pravega performance Benchmarking

It is demonstrated that the Pravega benchmark tool produces

the same performance as Kafka benchmarking tool; Now, we

can use the Pravega benchmark tool to compare the

performance between Kafka and Pravega with single

producer and with multiple producers. The Pravega

configuration values are listed in Table IV. The pravega

segment store/server configurations values are listed in

Table V. The Pravega adheres to the Lambda architecture

[18] hence for the data durability its first written to Tier 1

storage (typically bookkeeper) and asynchronously shifted to

Tier 2 storage.

Table IV: Pravega Configurations

Table V: Pravega segment store configurations

Pravega Segment store

configuration parameters

Remarks

Segment containers 32

Cache Size 64 GB (GigaBytes)

Rocks DB [18] [23] write cache

size

16 GB

Rocks DB read cache size 512 MB (MegaBytes)

Rocks DB cache block size 32 KB (KiloBytes)

Tier 2 Writer flush bytes 64 MB

1) Single producer Benchmarking

Fig. 7. Shows the single producer/writer performance

difference between Kafka and Pravega. Note that the Kafka

writes are very fast compare to Pravega; but, if the log flush

parameter (log.flush.interval.messages set to 1) set to flush

every event to disk to improve the durability, then

performance degrades as shown in same Fig. 7. The Pravega

performance depends on the Tier1 (bookkeeper)

performance, rocks dB performance and the cache settings of

the segment stores.

Fig. 7: Single producer performance

benchmarking: Kafka vs. Pravega

2) Single Consumer Benchmarking

Fig. 8. Shows the performance difference between a single

consumer of Kafka and Pravega. Whenever the Pravega read

involves Tier 2 storage read, the performance degrades.

Pravega Components/parameters Remarks

Version 0.5

Number of segment stores 3

Number of controllers 1

Number of clients 1

File System XFS on SSDs

Zookeeper Version 3.5.4 beta

Tier 1 Storage Bookkeeper [19]

[20], Version 4.7.3

3 bookies are used.

One bookie per

segment store

Tier 2 Storage Hadoop [21] [22]

version 2.7.3.

3 nodes cluster.

Distributed Streaming Storage Performance Benchmarking: Kafka and Pravega

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19 6

Fig. 8: Single consumer performance

benchmarking: Kafka vs. Pravega

3) Multiple producers Benchmarking

Fig. 9. shows the 10 producers/writers performance

difference between Kafka and Pravega. Note that the Kafka

writes are very fast compare to Pravega; but, if the log flush

parameter (log.flush.interval.messages set to 1) set to flush

every event to disk to improve the durability, then

performance degrades.

Fig. 9: 10 producers performance benchmarking:

Kafka vs. Pravega

4) Throughput vs Latency

Fig. 10, 11 and 12 shows the 50th (median), 75th and 99th

percentile of latencies for throughput range 10, 20, 30, 40 and

50 MB/S with 10 producers/writers. If the flushing enabled

for Kafka for every single event, the latency of Kafka goes

higher than 100 MS(milliseconds); so, in below figures, the

flush is set to default value (maximum value of Long integer)

and for 1 million events of each of size 1000 bytes, the Kafka

gives the consistent median latency of 1 millisecond even with

50 MB/s throughput. For Pravega, the least is 3 MS and

highest is 7 MS with durability writes to bookkeepers.

Fig. 10: Median (50th percentile) of Latency vs

Throughput

Fig. 11: 75th percentile of Latency vs Throughput

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-9 Issue-2S, December 2019

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19
7

Fig. 12: 99th percentile of Latency vs Throughput

5) Multiple Consumers Benchmarking

Fig. 13. shows the performance difference between 10

consumers of Kafka and Pravega. Note that, the peak

performance achieved by Kafka is 1GB/s (Giga

Bytes/Second) for approximately 100000 bytes event size.

Since Tier 2 reads are involved, Pravega reads are low.

Fig. 13: 10-consumers performance benchmarking:

Kafka vs. Pravega

6) End to End Latency Benchmarking

Fig. 14, 15, and 16 shows the median(50th), 75th and 99th

latencies comparison between Kafka and Pravega with single

producer and single consumer for varying data sizes of 10,

100, 1000, 10000, 100000 bytes. The Kafka records the lower

latency than Pravega.

Fig. 14: Median (50th percentile) latency of Kafka

vs Pravega

Fig. 15: 75th percentile latency of Kafka vs

Pravega

Fig. 16: 99th percentile latency of Kafka vs Pravega

Distributed Streaming Storage Performance Benchmarking: Kafka and Pravega

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10011292S19/2019©BEIESP

DOI: 10.35940/ijitee.B1001.1292S19 8

V. CONCLUSION

The design and implementation details of a High-performance

benchmarking tool for Kafka and Pravega with multi

producers and consumers supported are presented in this

paper. This design solves the synchronization issues between

multiple producers/consumers and it also identifies the

optimal data structures, data serializers, and frameworks to

achieve the peak throughput for Kafka and Pravega. The

Pravega benchmark tool is compared against Kafka producer

and consumer performance benchmark tool and Open

messaging benchmark tool too. The design of Pravega

benchmark tool, presented in this paper, can be extended to

performance benchmarking of any distributed storage

systems.

The Pravega streaming storage is optimized for write
operations with durability assured. Pravega is younger
compared to Kafka and further performance improvements
are expected in the future.

ACKNOWLEDGMENT

We thank our Pravega team lead Dr. Flavio Junqueira [16]

[19] for his guidance during performance benchmarking. We

also thank our other team members, Tom Kaitchuk and Dr.

Raul Gracia, for reviewing the source code of the Pravega

benchmark tool.

REFERENCES

1. Neha Narkhede, Gwen Shapira and Todd Palino, “Kafka, The
Definitive guide, O’reilly series, 1st edition, july 2017.

2. Apache Kafka website : https://kafka.apache.org/ , 2019.

3. Tyler Akidau, Slava Chernyak, and Reuven Lax, “Streaming
Systems”, O’reilly series, 1st edition, July 2018.

4. Apache Kafka download: https://kafka.apache.org/downloads#2.3.0 ,
version 2.3.0, 25th Jun 2019.

5. Apache Kafka source code: https://github.com/apache/kafka , 2019.

6. Pravega website: http://pravega.io , 2019.

7. Pravega source code: https://github.com/pravega/pravega , 2019

8. Pravega Benchmark tool:
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0

9. Open messaging benchmark tool:
https://github.com/openmessaging/openmessaging-benchmark ,
2019.

10. Herbert Schildt, Java: The Complete Reference, Oracle Press, 9th
Edition, 2014.

11. Brian Goetz, “Java Concurrency in Practice”, Addison-Wesley
publications, 9th print, 2010.

12. Java 7/8 , Array blocking queue,
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Array
BlockingQueue.html , 2019.

13. Java 7/8, Linked blocking queue,
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Linke
dBlockingQueue.html , 2019.

14. Java 7/8, Concurrent Linked queue,
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Concu
rrentLinkedQueue.html , 2019.

15. Maged M. Michael and Michael L. Scot, “Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue Algorithms”,
Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing, 1996.

16. Flavio Junqueira and Benjmin Reed, “Zookeeper: Distributed
Process Coordination”, O’reilly series, 1st edition, November 2013.

17. Apache Zookeeper , website : https://zookeeper.apache.org/ , 2019.

18. Martin Kleppman, “Desigining Data intensive Applications”, O’reilly
series, 1st edition, March 2017.

AUTHORS PROFILE

Mr. Sanjay Kumar NV is an Associate

Professor in the Dept. of CSE, KIT, Tiptur,

India. He is currently pursuing Ph.D under

VTU, Belagavi. He has published several

research papers international conference

papers since 2009. He is an active member

of IETE,ISTE, CSI.

Dr. Keshava Munegowda, is a consultant

Engineer at Dell EMC, Bangalore, India.

He is an open source developer of

Pravega stream-based storage. He holds

5 US patents in the storage domain and

has published several research papers in

international Journals and Conferences.

https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/downloads#2.3.0
https://kafka.apache.org/downloads#2.3.0
https://github.com/apache/kafka
https://github.com/apache/kafka
http://pravega.io/
http://pravega.io/
https://github.com/pravega/pravega
https://github.com/pravega/pravega
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0
https://github.com/kmgowda/pravega-benchmark/releases/tag/v1.0
https://github.com/openmessaging/openmessaging-benchmark
https://github.com/openmessaging/openmessaging-benchmark
https://github.com/openmessaging/openmessaging-benchmark
https://github.com/openmessaging/openmessaging-benchmark
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://zookeeper.apache.org/
https://zookeeper.apache.org/

